22 research outputs found

    Tuning the spontaneous light emission in phoxonic cavities

    Get PDF
    The modulation of spontaneous light emission of active centers through elastic waves in Si/SiO_2 multilayer phoxonic structures that support dual photonic-phononic localized modes, in the bulk or at the surface, is studied by means of rigorous full electrodynamic and elastodynamic calculations. Our results show that strong dynamic modulation of the spontaneous emission can be achieved through an enhanced acousto-optic interaction when light and elastic energy are simultaneously localized in the same region

    Alternative evacuation procedures and smart devices' impact assessment for large passenger vessels under severe weather conditions

    Get PDF
    Within the expansive domain of maritime safety, optimizing evacuation procedures stands as a critical endeavour. After all, evacuation is literally the last and fundamental safety level afforded to mariners and passengers. Recent incidents have rekindled interest in assessing the performance of this ultimate safety barrier. However, addressing evacuability requires a holistic approach. The authors present herein the setup, simulation, and ultimately evaluation of a novel approach and its ability to rigorously assess multiple innovative risk-control options in a challenging, realistic setting. Moreover, its benchmarking against conventional regulation-dictated evacuation processes is captured distinctively along with the relative effectiveness of each proposed measure. Such measures include smart technologies and procedural changes that can result in substantial improvements to the current procedures. These will impact the ongoing discourse on maritime safety by providing insights for policymakers, vessel operators, emergency planners, etc., and emphasize the need for further research and development efforts to fortify the industry against evolving safety challenges

    SafePASS : a new chapter for passenger ship evacuation and marine emergency response

    Get PDF
    Despite the current high level of safety and the efforts to make passenger ships resilient to most fire and flooding scenarios, there are still gaps and challenges in the marine emergency response and ship evacuation processes. Those challenges arise from the fact that both processes are complex, multi-variable problems that rely on parameters involving not only people and technology but also procedural and managerial issues. SafePASS Project, funded under EU's Horizon 2020 Research and Innovation Programme, is set to radically redefine the evacuation processes by introducing new equipment, expanding the capabilities of legacy systems on-board, proposing new Life-Saving Appliances and ship layouts, and challenging the current international regulations, hence reducing the uncertainty, and increasing the efficiency in all the stages of ship evacuation and abandonment process

    SafePASS Project : A Risk Modelling Tool for Passenger Ship Evacuation and Emergency Response Decision Support

    Get PDF
    One of the biggest challenges in the field of maritime safety is the integration of all the systems related to the evacuation and emergency response under one Decision Support Tool that could broadly cover all the emergency cases and assist in the co-ordination of the evacuation process. Besides, for a decision support tool to be useful we need to be able to calculate the Available time to Evacuate based on real-time data, such as the passenger distribution on board and of course based on the various sensor data that will monitor the damage and its propagation. For all the above, the risk modelling tool developed in SafePASS H2020 project is able to estimate the potential fatalities both in the design phase and in real-time, assessing the evacuation and abandonment risk dynamically, based on real-time data related to the passenger distribution, route, semantics, LSA availability, procedural changes, and damage case (fire or flooding) propagation

    Utilization of Vermicompost Sludge Instead of Peat in Olive Tree Nurseries in the Frame of Circular Economy and Sustainable Development

    No full text
    The survival of newly planted seedlings and their successful development after transplantation, including faster plant growth, improved plant quality, larger production, and the absence of dependence on arable land, is one of the primary goals of horticultural nurseries. Although peat is the most frequently used amendment in commercial potting substrates, exploiting it degrades essential ecosystems like peatlands and uses slowly renewable resources. This study evaluated the growth and nutrition of olive-rooted cuttings when peat was partially or completely replaced with vermicompost, searching for more sustainable methods and recovering urban wastewater treatment sludge sequentially. The progress of the plants’ growth was compared to that of corresponding plants in which commercial peat had been used as substrate. Leachates from every procedure were also examined, and the results revealed that trace element and heavy metal contents were much lower than those deemed hazardous for aquifers and soil. The outcomes indicated that peat might be effectively replaced with vermicompost sludge, promoting plant growth without further fertilizer. Comparatively to olive cuttings grown in peat-based substrates, those grown in compost-based substrates experienced improved nutrition and development. Further, it was found that irrigation doses were significantly reduced in treatments with a significant amount of vermicompost as the water drained more slowly. A technical-economic analysis was being conducted in the meantime, illustrating the financial benefits for a nursery when peat is replaced with vermicomposted sludge
    corecore